POLYACETYLENES FROM PANAX GINSENG ROOTS

SANG CHUL SHIM, HUN YEOUNG KOH and BYUNG HOON HAN*

Korea Advanced Institute of Science and Technology, P.O. Box 150, Chongyangni, Seoul 131, Korea; *Natural Products Research Institute, Seoul National University, Seoul, Korea

(Revised received 13 December 1982)

Key Word Index—Panax ginseng; Araliaceae; roots; C₁₇ acetylenes; heptadeca-1-ene-4,6-diyne-3,9,10-triol.

Abstract—Two major and two minor polyacetylenes were isolated from fresh Korean ginseng roots. The chemical structure of the two major polyacetylenes separated were determined by UV, IR, ¹H NMR, ¹³C NMR, mass spectra and elemental analysis. One of them was a new compound identified as heptadeca-1-ene-4,6-diyne-3,9,10-triol.

INTRODUCTION

A polyacetylene compound, panaxynol, from *Panax ginseng* roots was isolated by Takahashi *et al.* in 1964 [1, 2]. The chemical structure of the compound was identical to falcarinol [3] isolated from *Falcaria vulgaris* and carotatoxin isolated from *Daucus carota* [4]. Wrobel *et al.* [5] in 1973 also isolated another type of C_{17} polyacetylene compounds from ginseng.

We now report the isolation of falcarinol and a new polyacetylene compound from fresh ginserg roots and their structural determination.

RESULTS AND DISCUSSION

Four polyacetylenes, A-1-A-3, and B-1, were obtained and each component was examined by UV spectroscopy and compared with published data [6]. The spectra of the separated components showed typical polyacetylene vibrational bands (Table 1). They can be classified into two main polyacetylene groups having two different characteristic UV chromophores, namely a conjugated diyne system for A-1 and B-1 and a conjugated diyne-ene system for A-2 and A-3. Since A-2 and A-3 have higher molar absorption coefficients but show a much smaller absorption peak intensity by HPLC, they exist in minor quantities compared to those of A-1 and B-1. The preparative isolation and physical characterization of A-2 and A-3 were, therefore, not carried out. A-1 was identical to falcarinol by physical characterization.

The molecular skeleton of B-1 was easily recognized by 13 C NMR (25.16 MHz, CDCl₃) (Table 2). The proton wide band decoupled spectrum of B-1 showed the typical aliphatic methylene carbons at δ 22.2, 31.3, 28.8, 29.0, 26.0 and 27.1, the terminal methyl carbon of the straight aliphatic chain at δ 13.5, the two carbons of the terminal vinyl group at δ 61.7, and 136.3, the allylic carbon to the terminal vinyl group at δ 63.3, and the methylene carbon strongly shielded by conjugated triple bonds at δ 18.9. The resonance of quarternary carbons in the conjugated triple bonds exhibited at δ 77.6, 76.7 and 75.2 in B-1 were not definitely assigned because only three are observed instead of four, one being superimposed with solvent peaks. The

 $^{13}\mathrm{C}$ chemical shifts of two carbons in B-1, are shifted upfield from δ 126.6 and 122.1 to δ 56.5 and 54.0 as compared to A-1.

The IR of B-1 showed a hydroxyl group at 3400 cm⁻¹, a methylene group at 2940 and 2863 cm⁻¹, conjugated triple bonds at 2260 cm⁻¹, C-O stretching of a secondary hydroxyl group at 1120 cm⁻¹, and a terminal vinyl group at 1000-900 cm⁻¹. Two differences between the spectra of A-1 and B-1 were observed, one being the difference in relative peak intensity at 1120 cm⁻¹, the other being the absence of a peak indicating a cis internal double bond at 690 cm⁻¹ in spectrum of B-1. The reason for the former is attributed to the presence of additional secondary hydroxyl groups in B-1.

The ¹H NMR spectra (79.542 MHz, CDCl₃) of B-1 showed a complex spin system of a terminal vinyl group at δ 5.13–6.10, allylic protons to a terminal vinyl group at δ 4.79–4.92, methylene protons of straight hydrocarbon chains at δ 1.28–1.44 and corresponding terminal methyl group protons at δ 0.85. The absence of peaks in the range

Table 1. UV $\lambda_{\max}^{n-\text{hexane}}$ of ginseng polyacetylenes

Component	$\lambda_{\max}(nm)$	Band spacing (cm ⁻¹)
A-1	257	2411
	242	1968
	231	2165
	220	
B-1	254	2297
	240	2193
	228	2223
	217	_
A-2 and A-3	279	2181
	263	1977
	250	2194
	237	2054
	226	3371
	210	_

Table 2. ¹³CNMR chemical shifts of polyacetylene B-1

Carbon No.	Chemical shifts (δ)	
1	117.3	
2	136.3	
3	63.3	
4	77.6	
5	76.7	
6	75.2	
7	_	
8	18.9	
9	54.0	
10	56.5	
11	27.1	
12	26.0	
13	29.0	
14	28.8	
15	31.3	
16	22.2	
17	13.5	

 δ 5.37-5.48 indicates the absence of protons bound to the internal double bond of the aliphatic hydrocarbon chain in contrast to falcarinol. The presence of additional secondary hydroxyl groups in B-1 as compared with A-1 may be responsible for the very complex spin system between δ 1.98 and 3.19 in B-1.

The mass spectra of B-1 determined by EI showed neither an M^+ at m/z 278 nor typical fragment peaks, probably due to its inherent instability. However, the elemental analysis data of B-1 are consistent with the molecular formula $C_{17}H_{26}O_3$.

From these experimental results, B-1 is identified as a C_{17} acetylenic compound differing only in two secondary hydroxyl groups at the 9 and 10 positions instead of the cis double bond in falcarinol. B-1 is, thus, heptadeca-1-ene-4,6-diyne-3,9,10-triol. This is a new acetylenic compound among the C_{17} naturally occurring polyacetylenes in Korean ginseng roots. The stereochemistry of the vic-diol group is being further pursued.

EXPERIMENTAL

heptadeca-1-ene-4,6-diyne-3,9,10-triol. Fresh Korean ginseng roots (P. ginseng. A. C. Meyer) 8 kg were finely crushed and extracted with MeOH. MeOH extracts were partitioned between petrol-MeOH (1:1). The petrol layer was washed with 5% NaOH soln several times and the solvent evaporated. The crude oily mixture obtained (4.5 g) was dissolved in the CC solvent (petrol and Et₂O). Stepwise gradient elution from Si gel with petrol-Et₂O (from 5:1 to 2:1) gave two main fractions A (ca 120 mg) and B (ca 330 mg) containing the polyacetylene compounds. Each fraction separated by CC was further chromatographed by HPLC. To monitor the polyacetylenes from A and B analytical liquid chromatography was performed under the following conditions; column: μ-Bondapak CN (3.9 mm i.d. \times 30 cm), solvents: n-hexane-CH₂Cl₂(20:1) for fraction A; n-hexane-Et₂O(20:1) for fraction B, flow rate: 1.0 ml/min, detector: UV (254 nm). The R, values (min) were A-1 11.2, A-2 12.0, A-3 14.4 and B-1 8.3.

To isolate the polyacetylenes from each fraction, semi-prep. HPLC was carried out with the same instrument and the same microparticulate column. The polyacetylenes were collected in bottles immersed in dry ice-Me₂CO and covered with Al foil to exclude light. The purity of each separated fraction was rechecked by analytical HPLC. For spectroscopic measurements, the collected fractions were concd by evaporation in a stream of N₂. Residual solvents were removed by rotary vacuum evaporator.

Analysis for B-1 requires for $C_{17}H_{26}O_3$: C, 73.38; H, 9.35; O, 17.27; found: C, 73.06; H, 9.40; O, 17.54%.

The wts of A-1 and B-1 recovered after chromatographic fractionation were 7 and 12 mg, respectively.

REFERENCES

- M. Takahashi and M. Yoshikura (1964) J. Pharm. Soc. Jpn. 84, 752
- M. Takahashi and M. Yoshikura (1964) J. Pharm. Soc. Jpn. 84, 757.
- F. Bohlmann, U. Niedballa and K.-M. Rode (1966) Chem. Ber. 99, 3552.
- 4. D. G. Crosby and N. Aharonson (1967) Tetrahedron 23, 465.
- J. T. Wrobel, Z. Dabowski, H. K. Gielzynska, A. Iwanow, K. Kabzinska, J. Poplawski and J. Ruszkowska (1973) Tluszcze Srodki Piorace, Kosmet. 17, 63.
- F. Bohlmann, T. Burkhardt and C. Zero (1973) in Naturally Occurring Acetylenes p. 4. Academic Press, London.